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Abstract

The temperature, the stem length and the strain-rate dependence of the yield stress of polyethylene (PE) is investigated via a modified crystal

plasticity approach. Yielding is considered in terms of nucleation and propagation of [001] screw dislocations with Burgers vector c/2 due to

migration of 1808 chain twist defects. The stress-induced twist motion within the dislocation cores is modeled as an Eyring activated rate process.

This gives an inelastic contribution to the dislocation core energy depending on the stem length and the strain rate and results in improved

predictions of the crystal plasticity approach. The model is compared to available experimental data as well as to the predictions of the modified

crystal plasticity approach proposed by Brooks and Mukhtar.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Despite the considerable theoretical and experimental

efforts since the early 1970s, the molecular mechanisms

behind yielding of semi-crystalline polymers in general, and

polyethylene crystals in particular, are still a matter of

controversy. The main difficulties in the investigation of

these materials are caused by their very complex morphology

and the impossibility to isolate and study separately the

amorphous and the crystalline phases. Most often, yielding of

polymer crystals is attributed either to the generation and

propagation of screw dislocations [1–7], or to partial melting-

recrystallization under adiabatic conditions [8–10]. Peterson

[1] and Young [2] have shown that thermal fluctuations,

coupled with local shear stress, may generate screw dislo-

cations from the edges of the crystalline lamellae. Flory and

Yoon [8] proposed an alternative concept, namely, that the

applied stress and the adiabatic heating during deformation

cause a partial melting-recrystallization process. In general, it

is believed that crystal plasticity could not explain the observed

dependence of the intercrystalline long period on the
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temperature of deformation, while the melting-recrystallization

concept is unable to explain the development of preferred

crystallographic orientation during deformation and phenom-

ena like crystal phase change and twinning, which have been

reported to occur in polymer crystals [5].

On the other hand, the strain-rate and the pressure

dependence of the yield stress of polyethylene have been

studied using the Eyring transition state theory [11,12]. Despite

the ability of the Eyring approach to reproduce the

experimental data for semi-crystalline polymers with good

accuracy, there are some conceptual difficulties to interpret its

main fitting parameter, the so-called activation volume, in

terms of the crystalline properties and geometry. Actually, a

consistent, physically-based integration of the strain-rate

dependence into a crystal plasticity approach for semi-

crystalline polymers still remains an open issue. Another

difficulty is the inability of the classical crystal plasticity to

predict both the temperature and stem length dependence of the

yield stress of polyethylene in its original formulation [3].

Recent improvements in this direction have been proposed by

Brooks and Mukhtar [6] and Argon et al. [13] and are

commented further.

In the present work, we propose a modified crystal plasticity

approach, which is capable to reproduce the experimentally

observed temperature, stem length and strain-rate dependence

of the yield stress of polyethylene. First, we show that the

approach of Brooks and Mukhtar predicts a negative core
Polymer 47 (2006) 1696–1703
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energy for higher temperatures due to the overestimated

temperature dependence of the core energy. In order to solve

this problem, we consider [001] screw dislocations in PE

crystals as resulting from nucleation and propagation of 1808

chain twist defects with associated Burgers vector c/2. The

stress-induced twist motion within the dislocation cores is

proposed to be an Eyring activated rate process, which allows

us to incorporate the strain-rate dependence in the crystal

plasticity approach and to obtain more realistic predictions for

the stem length dependence of the yield stress. The activation

barrier for twist motion is modeled according to the work of

Tuijnman [14] on a-relaxation in polyethylene crystals. The

predictions of the proposed model are compared to available

experimental data for different polyethylene grades as well as

to the predictions of the crystal plasticity approach developed

by Brooks and Mukhtar.
Fig. 1. Dislocation core energy per unit length vs. temperature obtained with the

BM model.
2. Modified crystal plasticity approach

2.1. The model of Brooks and Mukhtar

According to the model developed by Brooks and Mukhtar

[6] (hereafter referred to as the BM model), the macroscopic

yield stress of semi-crystalline polymers subjected to uniaxial

tension or compression reads:

sy Z
K

p
aðTÞexp K

2pDGc

Kb2l
K1

� �
(1)

where K is the crystalline shear modulus related to (hk0)[001]

slip; DGc is the activation energy necessary for nucleation of

[001] screw dislocations; b is the corresponding magnitude of

the Burgers vector; l represents the stem length along the c

lattice direction in the crystalline lamella, usually tilted at a

certain angle to the lamella normal. The function a(T) is given

by:

aðTÞZ
b

r0
exp

2pE0

Kb2l

� �
(2)

where E0 and r0 are the dislocation core energy and radius,

respectively. In addition, a(T) is empirically fitted so that

Eq. (1) can reproduce the yield stress at different temperatures:

aðTÞZ 0:4992K0:00119T (3)

Combining Eqs. (2) and (3), we can express the core energy

per unit length E0/l in the BM model as:

E0

l
Z

Kb2

2p
ln

r0
b
ð0:4992K0:00119TÞ

h i
(4)

As in [6], we take the magnitude of the Burgers vector to

be equal to the c lattice parameter, i.e. bZ0.254 nm. The

dislocation core radius obtained by computer simulations is

r0Z1 nm [15]. The expression for the shear modulus K (MPa)

as a function of temperature is taken from Brooks et al. [16]:

K Z 3740:806K8:106T C0:0189T2K0:000025T3 (5)
The core energy per unit length as a function of the

temperature obtained with Eq. (4) is plotted in Fig. 1. It is seen

that the core energy predicted by the BMmodel is positive only

at very low temperatures and becomes increasingly negative

for temperatures TO200 8K, which has no physical sense. The

change of the Burgers vector to bZc/2 proposed by some

authors [5,7] encounters the same problem but at higher

temperatures. Moreover, the temperature dependence of the

core radius and the Burgers vector in Eq. (4) have only a

marginal effect on the estimated core energy because, within

the temperature window 0!T!400 8K, the lattice parameters

a and b of the PE unit cell increase with temperature by about 7

and 2%, respectively, while the c lattice dimension remains

virtually unchanged [17]. In conclusion, the assumption

about the temperature dependence of the core energy in the

BM model, Eqs. (3) and (4), seems to be not justified.
2.2. Dislocations due to chain twist defects

The results obtained with the BM model suggest that the the

direct application of the crystal plasticity for small-molecules

crystals to yielding of polymer crystals may not give a

physically consistent explanation of the experimental evi-

dence. In order to solve this problem, here we reconsider the

underlying microscopic deformation mechanisms taking into

account the long-chain nature of the polymer molecules. In the

following, we consider yielding of PE crystals as the result of

stress-induced generation and propagation of chain twist

defects within the crystal, as previously suggested in [5,7].

This molecular mechanism (Fig. 2) has been proposed long ago

by Fröhlich [18] for relaxation in paraffins. Later, Mansfield

and Boyd [19] developed a more refined model for the

dielectric and the viscoelastic relaxation processes in PE

crystals postulating the existence of smooth 1808 twists. More

recently, molecular dynamics studies confirmed that 1808 twist

defects in the crystals can propagate smoothly along the chains

like solitary waves (solitons) and are stable against thermal

fluctuations [21,22]. On the other hand, Crist et al. [4] and



Fig. 2. Screw dislocations with Burgers vector bZc/2 due to propagation of

1808 chain twist defects (after Boyd [20]); t is the applied shear stress, the zig-

zag lines within the stems represent the conformation of the PE molecules.
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Séguéla et al. [5] used the chain twist concept to interpret the

temperature dependence of the yield stress of polyethylene in

the context of dislocation generation and propagation.

In order to analyze dislocations obtained through the

propagation of chain twist defects, it is necessary to better

understand the processes and the energetics in the dislocation

cores containing the twists (Fig. 2). It is noted that the structure

of such cores and the associated core energy are profoundly

different from that observed in small-molecules crystals. In the

latter, the dislocation cores are line defects and the strain in the

core region is very large—atoms are displaced by about one

lattice constant over the entire length of the dislocation. In

contrast, the twists are localized in relatively narrow zones

along the chains and the strain in the misfit region caused by the

twist is only a few per cent [21]. Away from the twist, the

distortion rapidly decreases to zero because the forces exerted

by the surrounding chains bring the distorted chain back into

the crystallographic register [20].

From the above considerations, we expect the core energy of

a screw dislocation related to the propagation of a smooth twist

to be much smaller than the corresponding core energy of a

small-molecules crystal. The total core energy related to a

moving twist defect can be divided into two parts: (i) elastic

energy from distortion within the misfit zone and (ii) free

energy change due to the stress-induced twist motion. Then, the

change in free energy DG associated with the formation of a

nucleus of a pair of pure screw dislocations under a shear stress

t can be written similarly to the expression given by Brooks

and Mukhtar [6] as:

DGZ
Kb2l

2p
ln

r

r0

� �
C2ðE0 CdUÞKtblr (6)

where the logarithmic term on the right side is the elastic

energy of interaction between the two dislocation segments

separated by a distance r; E0 is the elastic energy from

distortion in the misfit zone; dU is the energy change related to

twist motion and the last term is the irreversible work done by

the applied stress t. The same expression is valid for the

nucleation of a single dislocation at a distance r/2 from the

lamella edge because of the existence of image forces.
The critical width of the nucleus rc corresponds to a

maximum of DG(r) and can be found by partial differentiation

of Eq. (6) with respect to r. Since the core energy (E0CdU) is
assumed to be independent on r for rO2r0, this gives:

rc Z
Kb

2pt
(7)

The activation energy DGc is found by replacing of Eq. (7)

in Eq. (6):

DGc Z
Kb2l

2p
ln

Kb

2pr0t

� �
K1C

4p

Kb2l
ðE0 CdUÞ

� �
(8)

If the thermal fluctuations are large enough to supply energy

DGc, a screw dislocation at a distance rc/2 from the lamella

edge could form and eventually expand under the applied shear

stress t.

To our knowledge, there is no continuum theory available

for the estimation of the elastic misfit energy E0 of a twisted PE

chain embedded in a perfect PE crystal. Molecular simulations

give the maximum misfit strain of such a chain to be about 5%

and the total misfit length along the chain direction to be about

70 CH2 units, or 9 nm [21]. These values suggest that E0 must

be much smaller than the core energy estimated for typical

dislocations. Given that the core energy in small-molecules

crystals is 5–10% of the total dislocation energy, E0 related to

twists should represent even a smaller fraction of the total

energy and can be neglected in a first approximation.

For the stress-induced twist motion, we suggest that this is

an Eyring activated rate process for the following reasons.

First, the yield stress of semi-crystalline polymers is rate

dependent and can be described by the Eyring transition states

theory, and more specifically, by the so-called cooperative

model of Fotheringham and Cherry [11,12]. Secondly,

according to the well-known Orowan equation, the plastic

shear rate of the crystal is proportional to the velocity of the

dislocations. Thirdly, in the context of migration of twist

defects, it is reasonable to assume that the velocity of the [001]

screw dislocations is proportional to the velocity of the twists,

so that a higher migration rate of the twists results in a higher

velocity of the screw dislocations. With these considerations in

mind, we can relate the plastic shear rate in the crystal _gp to the

shear stress t through the effective energy barrier for twist

motion DU by an Eyring equation:

_gp Z _g0 exp K
DUKtV

kT

� �
Cexp K

DUCtV

kT

� �� �n
(9)

where _g0 is a reference shear rate, V is an activation volume, k

is the Boltzmann’s constant and n is a cooperative exponent

expressing the probability for simultaneous (cooperative)

movement of n chain segments in the twist zone [11]. The

first term in the square brackets is the probability for twist

motion along the direction of the applied stress and the second

one represents the probability for backward motion. The

Eyring theory implies that the effective activation barrier at

equilibrium DU is lowered in the direction of the applied stress

by an amount tV and becomes higher by the same amount for
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reverse motion. As we consider the yielding process, the stress

t is relatively high so that tVOkT and the second term in the

square brackets of Eq. (9) can be neglected. This is equivalent

to the picture where the twist motion is strictly in direction of

the applied stress t, while the probability for backward motion

is practically zero. Then, Eq. (9) simplifies to:

_gp Z _g0 exp K
nðDUKdUÞ

kT

� �
(10)

where dUZtV is the free energy change related to twist

motion. We can express dU from Eq. (10) as:

dU ZDUC
kT

n
ln

_gp

_g0

� �
(11)

It is noted that in our formulation, the activation volume V is

not needed as a model parameter.

The effective barrier to relaxation DU for a long twisted

chain embedded in a perfect PE crystal in the absence of

external stress has been derived by Tuijnman [14]. Here we

assume that this is also the effective barrier to twist motion.

Then, we can write DU as [14]:

DU Z
p2

4
AB tan h

Bm

2A

� �
(12)

where A and B are the bond energy and the force constant for

twisting of one CH2 group, respectively; mZ2l/c is the number

of monomer units in the crystal stem, which can be obtained

from the stem length l and the unit cell dimension c.

The effective barrier DU has been derived under the

assumption of long chains, or, equivalently, large stem lengths

l. Molecular simulations [21,22] show that the twist accelerates

when it approaches a chain end. As most chain ends are

situated on the lamellae surfaces [23], it is reasonable to expect

that twists will accelerate as they approach the lamellae

surfaces. Consequently, close to the surface, the effective

activation barrier DU should be lower than the theoretically

predicted in Eq. (12). Therefore, we have to modify the

expression for DU for lamellae with stem lengths comparable

to the length of the twists. We can take these considerations

into account by writing the effective barrier for twist motion as:

DU Z
p2

4
AB tan h

bBl

Ac

� �
(13)

where the scalar parameter b!1 accounts for surface- and

chain-end effects, while the theoretical energy barrier for twist

motion in very thick crystals remains unchanged. We believe

that the effective barrier for twist motion could also depend on

the surface morphology, although we are not aware of detailed

molecular simulations of polymer crystals with realistic surface

morphology that can confirm or reject this assumption. In our

model, these effects can be taken into account through the

phenomenological parameter b. Such an influence of the

morphology of the lamellae fold surfaces on the yield stress has

been experimentally observed in Ref. [24].

In order to obtain the expression for the shear yield stress ty,

we neglect the elastic misfit energy E0 for reasons already
discussed above, and replace dU, given by Eqs. (11) and (13),

in Eq. (8). After some manipulations, this yields:

ty Z
Kb

2pr0
exp K

2pDGc

Kb2l
K1C f ðT ; _g; lÞ

� �
(14)

where

f ðT ; _g; lÞZ
4p

Kb2l

p2

4
AB tan h

bBl

Ac

� �
C

kT

n
ln

_g

_g0

� �� �
(15)

The effect of the hydrostatic pressure p is not taken into

account in Eqs. (14) and (15) but it can be readily included in

the context of the Eyring theory in the same way as, for

example, in Truss et al. [12].

Assuming that (i) the Tresca yield criterion is valid, i.e.

t%sy/2 and (ii) the macroscopic tensile or compressive rate, _3,
is proportional to the microscopic shear rate, _g, the

macroscopic yield stress sy is finally obtained from Eqs. (14)

and (15) as:

sy Z
Kb

pr0
exp K

2pDGc

Kb2l
K1CFðT ; _3; lÞ

� �
(16)

where

FZ
4p

Kb2l

p2

4
AB tan h

bBl

Ac

� �
C

kT

n
ln

_3

_30

� �� �
(17)

and the magnitude of the Burgers vector is bZc/2. The above

modeling of the yield stress unifies the crystal plasticity

approach and the cooperative Eyring theory for viscoplastic

flow. Eqs. (16) and (17) contain only one new parameter with

respect to the models already reported in the literature, namely,

the scalar b accounting for the properties of the fold surfaces.

The model is valid for stem lengths greater than the length of a

fully developed twist defect, which is about 9 nm as obtained

from atomistic calculations [21,22], and for temperatures

above the glass transition temperature Tg. Below Tg, the

amorphous phase becomes much stiffer and the balance law for

free energy change, Eq. (6), should include a contribution from

the local elastic deformation of the amorphous phase around

the dislocation nucleus.
3. Results and discussion

3.1. Materials and model parameters

In order to compare the predictions of our model to the

experiment, we use experimental data for different polyethy-

lene grades investigated in [12,16,25]. For the temperature

dependence of the yield stress, we use data from Brooks et al.

[16] for three PE grades referred to as materials A, B and C and

subjected to tension at a strain rate of 2.08!10K3 sK1. The

measured lamellar thickness d for materials A, B and C is 10.7,

11.1 and 18.4 nm, respectively; the molecular weight Mw is

126,000; 206,000 and 131,000, respectively; the branch

content per 1000 carbon atoms is 21:1000; 6.2:1000 and

0.1:1000 C, respectively. The lamellae thickness d can be

converted into a corresponding stem length lZd/cos q based on
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Fig. 4. Yield stress vs. temperature for material B.
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Fig. 3. Yield stress vs. temperature for material A.
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previous studies of PE showing that the chain axis is tilted at an

angle qZ34.58 to the lamella normal [26,27]. For the

dependence of the yield stress on the stem length, we refer to

data reported in Kazmierczak et al. [25]. These authors

investigated the yield of high density polyethylene in

compression in order to exclude undesirable phenomena

observed in tension, such as micro-necking and void

generation. The molecular weight and the branch content for

the samples used in [25] are MwZ120,000 and 5:1000 C,

respectively. The deformation is performed at room tempera-

ture at a compression rate of 1.1!10K3 sK1. For the strain rate

dependence, we compare the model predictions for different

strain rates and temperatures to the experimental data reported

in Truss et al. [12].

The material constants in Eqs. (16) and (17) are chosen as

follows: the shear modulus K(T) is computed with Eq. (5); the

magnitude of the Burgers vector is bZ0.127 nm; the

dislocation core radius is r0Z1 nm; the activation energy is

taken as DGcZ60kT [6] where the Boltzmann’s constant is

kz1.38!10K23 J/K. For the bond energy A and the twisting

force constant B of one CH2 unit we use the values identified by

Tuijnman [14]: A2Z8.1!10K19 and B2Z4.3!10K21 J/mon

rad2, respectively. The reference strain rate is taken as

_30Z2:08!10K3 sK1. This value is chosen purely for conven-

ience, a physically based reference strain rate could be derived

but is beyond the scope of this work. For the simulations with

the BMmodel, we use the same material parameters, except for

the magnitude of the Burgers vector, which is taken as bZ
0.254 nm [6]; the core-energy function a(T) for that model is

given by Eq. (3).

3.2. Temperature dependence

We first consider the yield stress as a function of

temperature. The experimental data for materials A, B and C

are from Ref. [16]. In order to insure a fair comparison with the

BM model, we use the same value of b for the materials A, B

and C, bZ0.15, albeit the important differences in the

morphologies of the samples would justify a separate fitting

for each material.

The yield stress for material A, which is a low density

branched polyethylene, is shown in Fig. 3. It is seen that our

model gives a fairly good prediction of the yield stress for

temperatures TO200 8K. The underestimation of the yield

stress at low temperatures can be explained with the

increasingly important stress contribution from the amorphous

phase, which is not taken into account here. The amorphous

phase stiffens considerably below the glass transition tempera-

ture, which for polyethylene is Tgz150 8K [4].

The model predictions and the experimental data for

material B, a medium density polyethylene with low branch

content, are plotted in Fig. 4. The model underestimates the

experimental data for temperatures T!300 8K. The discre-

pancy with the experiment can be easily diminished by setting

a higher value for b than the currently employed, bZ0.15. We

believe that the apparently higher activation barrier for twist

motion in this case is due to the higher molecular weight of
the material B with respect to the materials A and C, which

results in different properties of the fold surfaces.

The results for material C, which is a high density linear

polyethylene, are depicted in Fig. 5. It is seen that the model

reproduces well the observed yield stress for temperatures T!
300 8K. The overestimation of the yield stress at elevated

temperatures is most probably due to a decrease in the intrinsic

viscosity within the crystals with approaching the a-relaxation

temperature, which for PE is about 330 8K [4].
3.3. Stem length dependence

The evolution of the effective activation barrier for twist

motion DU with the stem length is shown in Fig. 6.

The theoretically predicted with Eq. (12) evolution of DU is

too steep and leads to an overestimation of the experimentally

observed yield stress for any of the considered polyethylene

grades. The corrected activation barriers for the materials

studied here are also shown. It is seen that the activation energy

for twist motion is of the order of 1 eV (z1.6!10K19 J) even

for very thick crystals, which suggests that the stress-induced

twist motion is an energetically favorable process. Similar
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values for the activation energy have been obtained by

theoretical calculations for thermally activated [001] dislo-

cation generation in polyethylene crystals [23].

In their study of the yield stress of both linear polyethylene

and its copolymers, Kennedy et al. [10] performed tensile

experiments for samples with different lamellae thicknesses

and found that after an initial increase for thinner lamellae, the

yield stress remains virtually unchanged over a broad range of

thicknesses, which is in contradiction with the predictions of

the crystal plasticity approach. In a recent work, Kazmieczak

et al. [25] obtained HDPE samples with a broad range of crystal

thicknesses by crystallization under high pressure, and their

results confirmed the saturation of the yield stress with

increasing the lamellar thickness. An attempt to model this

behavior has been made by Argon et al. [13]. In addition to

pure screw [001] dislocations, these authors considered the

nucleation of edge and screw dislocation half loops from the

lamellae edges. In [13], the mechanisms for nucleation of

dislocation half loops are directly transposed from research

made on small-molecules isotropic crystals [28]. However, it is
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Fig. 6. Activation barrier for twist motion DU as a function of the stem length.
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materials studied here.
unlikely that such half loops could exist and operate in

polyethylene crystals. If we consider that the polymer crystals

are made of chain stems where the intra-chain covalent bonds

are much stronger than the Van der Waals interactions between

the stems, it is unclear what would be the specific molecular

mechanism for generation of half loops where the dislocation

line crosses the chain direction and whether such a mechanism

would be energetically favorable. Here we show that the

experimentally observed results can be explained by consider-

ing only perfect screw dislocations due to chain twists.

For simulation of the stem length dependence, the parameter

b for the HDPE used in [25] is identified as bZ0.12. The

cooperative exponent n is set as nZ1.4 (see the next

paragraph). The temperature is TZ293 8K. The difference

between the compressive rate ð_3Z1:1!10K3 sK1Þ and the

strain rate used in the experiments for materials A, B and C

ð_3Z2:08!10K3 sK1Þ is taken into account. The remaining

model parameters have the values used for the previous

simulations. The results are shown in Fig. 7. It is seen that the

complex dependence of the yield stress on the stem length is

reproduced better with the present approach compared to the

classical crystal plasticity. The experimental data of Kazmiec-

zak et al. [25] show that after an initial steep increase, the yield

stress saturates with increasing the stem length. Actually,

instead of a simple saturation behavior, our simulation predicts

a maximum and a slight overshoot for stem lengths of about

50 nm and this seems to reflect correctly the experimentally

observed behavior. This transition stem length is controlled by

the parameter b-higher values for b correspond to lower values

for the transition stem length. This behavior is naturally

obtained with our model, but it is important to note that we did

not incorporate any specific a priori assumptions predicting the

yield stress saturation with increasing the stem length or the

slight overshoot at the transition stem length. Also, the steep

increase of the yield stress with increasing the stem length for

l!50 nm is predicted reasonably well. In contrast, the BM

model predicts a monotonic increase of the yield stress and

gives less satisfactory results for stem lengths less than 70 nm.
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3.4. Strain rate dependence

For the strain-rate dependence of the yield stress, we use

experimental data from Truss et al. [12]. The material is linear

polyethylene with molecular weight MwZ220,000. As the

lamellar thickness has been not measured, for this simulation

we take the lamellar thickness of material B, which has a

similar molecular weight. The parameter b has been identified

as bZ0.22. Four representative sets of data have been chosen

at four different temperatures as indicated in Fig. 8. For the

simulations at temperatures TZ243, 263 8K, the cooperative

exponent has been identified as nZ2.5. For temperatures TZ
303, 323 8K, best fit is obtained with nZ1.4. The other

parameters of the model have not been modified.

The results are shown in Fig. 8 and are in a reasonable

agreement with the experimental data, despite the fact that we

use a very simple Eyring model for the rate dependence. The

decrease of n with increasing the temperature is in accord with

the findings of Brooks et al. [16], who established the existence

of a transition temperature above which the viscoelastic

behavior prevails, while below that temperature the elastic–

plastic type of behavior dominates. For example, for material

B, which seems to be similar to the grade studied by Truss et

al., the transition temperature is about 253 8K [16]. In the

context of propagation of twist defects, the decrease of the

cooperative exponent n with increasing the temperature can be

interpreted in terms of a corresponding decrease of the twist

length along the chains due to increased chain flexibility, lower

effective viscosity in the crystal and easier bond rotation. The

smaller values of n correspond to a higher strain rate

dependence in the viscoelastic regime, while higher n at low

temperatures describe the less pronounced strain-rate depen-

dence characteristic for the elastoplastic behavior.
4. Conclusions

We have developed a micromechanical model for the

temperature, the stem length and the strain-rate dependence of
the yield stress of polyethylene considering only pure screw

[001] dislocations. The model is based on the following

assumptions: (i) the molecular mechanism for generation and

propagation of [001] screw dislocations in polyethylene is the

migration of chain 1808 twist defects under the applied shear

stress with magnitude of the Burgers vector c/2; (ii) the twist

motion is a dissipative process and can be described by an

Eyring activated rate process. The latter assumption allows us

to incorporate the strain-rate dependence into the crystal

plasticity approach in a physically consistent way, which has

not been previously attempted. The effective activation energy

for twist motion is found to be of the order of 1 eV. Therefore,

twist generation and propagation must be an energetically

favorable process at all temperatures. It is found that the

theoretical activation barrier for twist motion estimated by

Tuijnman [14] gives realistic results for very thick crystals but

should be lower for typical thicknesses of PE crystals in order

to match the observed values for the yield stress. The lowering

of the activation barrier is proposed to be related to easier twist

motion close to the fold surfaces. The predicted temperature

dependence of the yield stress is in a good agreement with the

available experimental data for both low- and high density PE

grades. The model predicts that the yield stress of PE levels off

with increasing the stem length, as observed experimentally.

For stem lengths about 50 nm, our simulation predicts a

maximum of the yield stress and a slight overshoot. However,

this result is entirely due to the stem length dependence of the

activation barrier for twist motion and not to activation of

additional dislocation half-loop mechanisms, as recently

proposed by Argon et al. [13]. The strain-rate dependence is

found to increase with increasing the temperature, in accord

with the existence of a transition temperature for the

mechanical behavior of PE crystals from an elastoplastic to a

viscoelastic regime, as suggested in [16]. In our model, this

effect is reflected by the smaller value of the cooperative

exponent n at elevated temperatures and is attributed to the

smaller relative length of the twist defects due to easier bond

rotation, increased chain flexibility and lower intrinsic

viscosity in the crystal. Further work is required to extend

the model for low temperatures below the glass transition by

considering the free energy change due to the elastic

deformation of the amorphous phase around the dislocation

nucleus.
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